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Subatmospheric Vapor Pressures Evaluated from
Internal-Energy Measurements
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Vapor pressures were evaluated from measured internal-energy changes in the
vapor + liquid two-phase region. 1U**. The method employed a thermo-
dynamic relationship between the derivative quantity (¢U*2'/2F), and the
vapor pressure {p,) and its temperature derivative (dp/éT),. This method was
applied at temperatures between the triple point and the normal boiling point
of three substances: [ 1.1 2-tetratfluorocthane (RI134a). pentafluorocthane
{R125). and difluoromethane (R32). Agreement with experimentally measured
vapor pressures near the normal boiling point (101.325 kPa) was within the
experimental uncertainty ol approximately +0.04 kPa ( £0.04%). The method
was applied to Rl34a to test the thermodynamic consistency of a published
p p- T equation of state with an equation for p, for this substance. It was also
applied to evaluate published p,, data which are in disagreement by more than
their claimed uncertainty.

KEY WORDS: difluoromethane: internal energy: pentafluoroethane: refri-
gerants: 1.1.1.2-tetratluoroethane: triple point. two-phase region; vapor pressure.

1. INTRODUCTION

Ambrose and Davies [ 1] have reviewed developments in measurement and
estimation of low-pressure vapor pressures below the atmospheric range of
1 to 200 kPa. They have concluded that most of the methods for the
measurement of low-pressure values are time-consuming and relatively
inaccurate, and improved methods need to be developed. For these
reasons, we seek to develop better estimation procedures which may
extrapolate high-accuracy vapor pressures in the atmospheric range
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{ ~100kPa). The most reliable data in this range have uncertainties
approaching 1 part in 10° of the vapor pressure, p_,. The accuracy of most
experimental vapor pressures probably falls at lower pressures by about a
power of 10 for every tenfold decrease in pressure. Thus, at 1 Pa, the
possible uncertainty in a vapor pressure may be about 100%. The chief
objective of this work is to develop a new method to calculate reliable
vapor pressures at pressure conditions where conventional measurements
are frequently suspect or, in many cases, nonexistent. We first show the
relevant thermodynamic equations, then review published methods, théen
discuss the equations specific to the new method. In the latter half of this
work we apply the new method to three substances.

Procedures to extend vapor-pressure measurements to low tem-
peratures have been based principally on thermodynamic equations for the
vapor pressure. Thermodynamic equations for the vapor pressure always
begin with the equality of the Gibbs energy of the coexisting phases
G'(T, p) =G"(T, p), which applies to vapor-solid, solid-liquid, or liquid-
vapor equilibrium. For small changes in the equilibrium temperature and
coexistence pressure, the changes in the Gibbs energy due to the small (dT
and dp) changes must be equal, dG' = dG". Substituting the Gibbs—Duhem
equation for the Gibbs energy, dG =V dp — S dT, into this equality gives
the expression, V' dp —S'dT=V" dp— S" dT. Since T and p are the same
in both phases, we may rearrange this expression to obtain

<E)_p _<S’—S">_AVM,S 1)
aT), \V' = V") AyspV
Substituting the definition G=H — TS into the Gibbs equality we get,

H' —TS'=H" —TS". Rearranging gives S'—S" =(H'— H")/T. We may
substitute this last result into Eq.(l) to obtain the familiar Clapeyron

equation
R S
oT), \T(V'—=V")) TAdyspV
If we then substitute the definition of H= U+ pV, we obtain
0 u-u Ayap U -
<_/’> =(_,.T>+&=V_M_+P_ @)
oT), \T\V —=V")) T TdyV T

or we may write, more compactly,

T2 <a(P/T)) =Av/\l*U
oT ], duapV
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Equations (1)-(4) illustrate how we can use data for entropy, enthalpy, or
internal-energy changes to extract useful information on the temperature
derivatives of the saturation pressure. When combined with measurements
of vapor pressure in the atmospheric range and fitted to a vapor pressure
equation, we may integrate Eqs. (1)-(4) to obtain accurate vapor pressures
at pressures below the atmospheric range.

Since precise experimental data for entropy, enthalpy, or internal
energy for saturated liquid and vapor states are seldom available, other
practical strategies have been proposed. Majer et al. [2] have extensively
reviewed published work on enthalpies of vaporization. They discuss the
methods for extracting vapor pressures which employ an integration of the
Clapeyron equation and a knowledge of the vapor pressure at a single
temperature, concluding that often there are insufficient experimental data
available to obtain accurate vapor pressures. This point has been
amplified by McLinden [3]. McLinden analyzed the direct integration of
the Clapeyron equation for 2,2-dichloro-1,1,1-trifluoroethane (R123).
McLinden used an accurate equation of state developed by Younglove
and McLinden [4] to calculate all of the parameters in the Clapeyron
equation, Eq.(2). To illustrate the effect of experimental uncertainties,
McLinden applied a systematic +0.1% offset to the enthalpies of
vaporization calculated with the equation of state, then calculated vapor
pressures. Starting an integration of the Clapeyron equation at a reference
state of (300 K, 97.8 kPa), he found that the calculated vapor pressure was
1% too low at 250K, 10% too low at 215K, and in the worst case,
negative at 190 K. In practice, the experimental uncertainty of enthalpies of
vaporization is often 5 to 10 times the systematic offset used by McLinden,
implying that because of its sensitivity to experimental uncertainties,
integration of experimental 4, H may be impractical over wide ranges of
temperature.

Recently, however, practical approaches which may circumvent these
problems have been developed. Tillner-Roth [5] has presented a method
which employs a nonlinear regression analysis to extrapolate p, from near
the normal boiling point to the triple point, based on integration of the
Clapeyron equation in terms of In p, and T "' and a simple equation for
AyapH. While no experimental 4y, H data were used, selected vapor-
pressure data were employed in this method. A one-term equation for the
T dependence of Ay, H was employed which may not always adequately
describe the behavior of 4y, H over a wide range of temperatures. In any
case, it has been shown to be a reliable method for refrigerants between the
triple point and 0.1-0.2 MPa. The vapor pressures calculated with Tillner-
Roth’s method are within a few pascals (or 0.1 %, whichever is greater) of
experimental measurements.

840181412
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Weber [6] has presented a method for extrapolating vapor-pressure
data with saturated-liquid heat capacities by applying an iterative method
with the equation,

RT (dV” dV'"\/dp d’p
xC,=C+—|—=1-T|—= =) =V
? r ot |4 < (/T> T< dT ><(/T>,, I T<(1T2>,, )

where C, denotes the saturated-liquid heat capacity. This is a complex
method, and as with any such technique, there are possible hidden
problems. For example, there is a possibility of numerical instability of the
right side of Eq. (5), whose (first and second) and (third and fourth) term
pairs are of nearly equal magnitude but with opposite signs. Also,
knowledge of a number of complex thermodynamic properties especially
the first and second derivatives, is required to evaluate the terms in this
function. An ideal-gas approximation for the vapor phase is given for the
second term on the right side. Weber has pointed out that the full real-gas
term must be used for calculations and that Eq. (5) is better for going from
p, to C,. Nevertheless, p, values estimated with this method have been
successfully used to develop equations of state, for example, Refs. 4 and 7
at low temperatures.

Magee [8] has shown that useful information on the temperature
derivatives of the vapor pressure may be obtained from isochoric
measurements of internal-energy changes or heat capacities in the vapor +
liquid coexistence region. The key measurements required are density and
internal energy. In order to treat these two-phase data, the following rela-
tions will be derived beginning with the definition of the Helmholtz free
energy, 4 = U— TS. Our starting point is a combination of the two expres-
sions U=A+ TS and S= —(84/0T)., from which we obtain

U=A—T(0A4/0T), (6)

The internal energy in the two-phase region, U'*', is a function of T and
V. This is a bulk thermophysical property, which is a mass average of the
saturated liquid and saturated vapor (specific) properties at the same T
and p. We may evaluate the derivative with respect to ¥ while T is constant,

(QU'/aV) ;= (04'(3V),— T(@°4'*/0V OT) (7)

Substituting the equality p,= —(34'*'/0V), into Eq.(7), we obtain the
expression relating the two-phase internal energy to the vapor pressure,

(/(P/T)>
ar /,

QU oV) = T<%> —p, =T <

(8)
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Il we differentiate both sides of Eq. (8) with respect to 7T, we obtain the
following result in the two-phase region:

(2) _ d’p
(0CjoVy, = T<(1T2>(, (9)

which could also be obtained by differentiation of an expression [their
Eq. (3)] derived by Yang and Yang [9].

Equations (8) and (9) suggest a simple procedure for evaluating vapor
pressure from calorimetric measurements at constant volume, such as
reported by Magee [10] for 1.1,1.2-tetrafluoroethane (R134a). We can
calculate discrete values of the first and second temperature derivatives of
the vapor pressure for two-phase samples from internal energy mea-
surements and the resulting heat capacity data for at least two bulk
densities. These calculations will be done at temperatures which overlap
existing vapor-pressure measurements near the normal boiling point and
extend to much lower temperatures. Since the relationships of both internal
energy to volume and heat capacity to volume must be exactly linear for
two-phase states at constant temperature, only two two-phase isochores
are needed for these calculations, though five or more isochores would be
beneficial. The derivatives calculated with this procedure and selected
measurements of vapor pressure could be fitted simultaneously to a vapor
pressure equation. No assumptions have been made in the procedure. No
additional corrections need be made to the raw experimental data. The
recommended temperature range for this calculation and fitting procedure
would be TyxipLr: < T<0.8T, since the curvature of the internal energy
and heat capacity becomes very strong at temperatures close to the critical
point, raising the uncertainty of the estimates of these derivatives. We
demonstrate below that the procedure yields vapor pressures with a low
uncertainty.

2. DETAILS OF TECHNIQUE

2.1. Working Equations

This section presents a technique for accurate evaluation of vapor
pressures from isochoric internal-energy measurements in the two-phase
region. For the alternative refrigerants of interest, no independent studies
of C'?' measurements have been published. Since U'*’ and C\*' from the
same study would reveal much the same information, Eq.(9) was not
employed in this work. The method is based solely on Eq. (8). Figure 1
illustrates the behavior of internal energy U‘*' of a two-phase sample of
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Fig. 1. Linear dependence of two-phase internal energy on bulk specitic
volume at a temperature near the normal boiling point of R134a: data from
Ref. 11: the arbitrary reference condition is defined as U =0 at the saturated
vapor state at 7=248 K.

1.1,1,2-tetrafluoroethane (R134a) at a constant temperature of 248 K. This
temperature is slightly higher than the normal boiling point [11] of
246.78 K. The internal-energy function in Fig. 1 varies linearly {from the
saturated liquid U’ to the saturated vapor U”, to which we have assigned
an arbitrary value of 0. At a bulk two-phase specific volume ¥'*', the bulk
internal energy is U'?'. Since U'* is a linear function of ¥'*' at any given
temperature, (3U'*'/dV'?),.is a unique value that can be determined easily
with finite differences by any two (U'?, V'*') pairs of values within the
two-phase region. This derivative is evaluated with the expression,

(6U‘3’/6V‘3‘),~=<

Ug:)_ U(l)
2 | > (10)
7

T 0
I/(:!_l _— Vll_)

where the subscripts 1 and 2 denote any two points within the two-phase
region, including the points at the saturated single phases and the super-
script (2) denotes the bulk property (that is, the property of the vapor and
the liquid combined).

After computing (3U'*'/dV*?'), at different temperatures in the tem-
perature range of interest, we can fit these values to Eq.(8), [with an
appropriate model for p,(7T)] to produce vapor pressures using nonlinear
regression [ 12]. The regression analysis must fit the adjustable parameters
in the difference between two equations: those for T(dp/dT), and p,. In
order to be successful, we must select a model for p (T} which is capable
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of fitting vapor-pressure data within experimental uncertainty over the
entire temperature range of interest.

The best source of experimental values for U'? is from isochoric (con-
stant V'¥’) measurements with an adiabatic calorimeter. At least two
isochores are needed to calculate the change of the bulk internal energy
with respect to the bulk specific volume at constant temperature. Since the
calorimetric measurements provide the change of internal energy along a
given isochore, but not the change of internal energy from one isochore to
another, we need additional information at a reference temperature to
determine the change of internal energy between two isochores. This
reference temperature is selected near the normal boiling point, where
accurate, direct measurements of vapor pressure are available.

(8U'?/oV'?) at the reference temperature can be calculated with
Eq. (8) and vapor-pressure data around the reference temperature. Then
the change of internal energy from isochore 1 to isochore 2 at that
reference temperature can be determined as follows:

U122b_U<ll):(aU(2b/aV(2i)T( V(lli_V(IZ)) (11)

In this procedure, we set the internal energy of one of the isochores (UY”
or U'?") to an arbitrary value at the reference temperature.

2.2. Test of Technique with Equation-of-State Calculations

We tested this procedure with (8U/0V), values generated with an
equation of state for the temperature range of interest. We calculated inter-
nal energies for R134a in the single-phase fluid at the saturated liquid and
vapor densities with the Tillner-Roth [11] equation of state and compared
the vapor-pressure values produced by the technique presented in this work
with the Huber and McLinden [ 7] vapor-pressure equation for R134a. At
248 K, the vapor pressure produced with the (8U/0V), values is 13 Pa
lower ( —0.01 % ) than the value from the vapor-pressure equation. At 210.0 K,
it is 14 Pa higher ( +0.1%). At the triple-point temperature (169.85 K), it is
3 Pa higher ( +0.8%). We have demonstrated that there is good consistency
between the equation of state developed by Tillner-Roth and Baehr and the
vapor-pressure equation independently determined by Huber and McLinden.
More importantly, these results demonstrate the effectiveness of the working
equations and methodology developed for this project.

2.3. Application to Three Substances

This method was applied to three alternative refrigerants: 1,1,1,2-
tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane
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(R32). These fluids were chosen because of the availability of calorimetric
data. Magee and co-workers [ 10, 14] measured 4U'*’ and V'*' along two-
phase isochores with an adiabatic calorimeter. Initially, we used Magee’s
[ 10] calorimetric data {rom the isochores with the highest and lowest den-
sities. The diflerence in internal energy between the two isochores is about
15 J-mol ' at the reference temperature and about 0.2 J.mol ' at the
triple-point temperature. With an uncertainty of 0.1 J-mol '-K ' for
AUAT, it was not possible to determine (3U'*'/0V'?}, with sufficient
accuracy. Unfortunately, the published two-phase isochores are too close
to the saturated liquid and too close among themselves.

The normal boiling-point and triple-point temperatures for R134a are
24678 K [11] and 169.85 K [10], respectively. A temperature of 248 K was
selected for the reference temperature due to the availability of tabulated
saturation curve data. The internal-energy reference state, where we arbitrarily
set U =0, was selected as the saturated vapor at 248 K. We have evaluated
vapor pressures for R134a from 248 K to the triple-point temperature.

Experimental data on internal-energy changes at a low (0.01 <p/p. <
0.1) bulk density have not been published for R134a. As a substitute, we
used internal energies of the saturated vapor from an equation of state for
our low-density states. We patred this with a high-density isochore from
calorimetric measurements. The difference in internal energy between
these two curves is about 20 kJ-mol ' at the reference temperature and
about 25.5 kJ-mol "' at the triple-point temperature. The large absolute
values we obtained for AU' allow us to calculate accurate values of
(aUcl/aVlZ))T.

In order to determine the magnitude of the real-gas contribution, we
obtained the saturated-vapor internal energies in two ways. First, looking
at only the ideal-gas contribution, we employed ideal-gas heat capacities
[11] for the determination of internal energies. The ancillary equation
reported by Tillner-Roth [11] was employed for saturated-vapor densities.
With this approach, we obtained estimated vapor pressures which were
slightly high. A comparison with the vapor-pressure equation reported by
Huber and McLinden [7] and the vapor-pressure equation reported by
Tillner-Roth [11] shows a deviation of + 160 Pa (+0.2%) at the reference
temperature and + 20 Pa(+5%) at the triple point.

In the second case, we included the volumetric contribution to internal
energies from dU= C dT+ (0U/0V),dV by using the Tillner-Roth [11]
equation of state for the gas-phase properties of R134a. This led to
excellent results for the calculated vapor pressures. A comparison with the
vapor-pressure equation reported by Huber and McLinden [7] shows a
deviation of —32 Pa (—0.03%,) at the reference temperature and —3 Pa
(—0.8%) at the triple point.
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Our primary focus is the development of a new equation of state for
a fluid of interest. For this task, reliable vapor pressures are essential input
data for the fitting procedure. These data should ideally cover a broad
range of temperatures. In most cases, there are ample p, data near ambient
conditions, but data are scarce at very low temperatures. In these cases, we
use the ideal-gas calculation in the first iteration, then fit a preliminary
version of an equation of state and use it to calculate the volumetric
contribution. We iterate this process until the results converge.

In order 1o test the sensitivity of this procedure to the form of the vapor-
pressure equation, we used two functions for the vapor pressure p,(T) model
in Eq. (8): the first is an equation of Huber and McLinden [ 7],

1np—”=C1T"+C3<—T—>+C3‘[+C4T3 (12)
D I—7
where 1=1—-T/T_, e=1.66, T-=374.179 K, and p. =4.056 MPa.

The second equation is from Tillner-Roth [11]:

1 I
np—”=?[C|T+C2TI'5+C3T“+C4T4] (13)
p. T,

<

1

where T, =374.18 K and p_=4.05629 MPa.

We obtained nearly identical { +2 Pa) vapor-pressure results when the
calculated data are fitted to either Eq. (12) or Eq. (13). Thus, the technique
is independent of the model used for p,(T), as long as this model is capable
of fitting experimental vapor pressures in the temperature range of interest.
Table I presents the fitting parameters (C,, C,, C;, and C,) from
experimental vapor pressures for both vapor-pressure equations.

Table I.  Parameters for Vapor-Pressure Ancillary Equations

¢, ¢, s C, Cs
Eq. (12). R[34a“ 3946984 — 11313271 3.693108 5.566337 -
Lg. (13), R134a" —7.686356 2311791 —2.039554 —3.583758 -
Eq. (17). R125 —7.435645 1.341794  — 23367536 —1.697153 - -
Eq. (18). R32 —7.559554 2465252 —1.976887 —2.021284 — 1.941251
Eq. {121, R13da 4023776 — 11382390 3.746535 5.675758 -
Eqg. (17). RI25 —7.517629 1.330640  —3.618286 — 1.802400
Eq. (18). R32 —7.566935 2484133 —1.984020 —2.067412 —1.921275

“From Ref. 7.
" From Rel. 11.
“From Ref. 13.
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In every test case presented for R134a, the change in internal energy
along the high-density isochore was determined from Magee’s [10] two-
phase calorimetric data. We chose an isochore that includes measurements
from 175.830 to 250.426 K. For this isochore, the calorimetric bomb ({with
a volume of approximately 73 cm®) contained 0.9697 mol of sample. The
energy needed to change the temperature of the sample by | K was fitted
to the equation

Q/AT=a,+a, T '"+a-T * (14)

where Q is in J and T is in K. The coefficients are a,=2.10249278 x 10°,
a; = —3.17356599 x 10*, and a,=2.70115464 x 10°.
The change of internal energy along the isochore is then calculated as

"0/4T)dT
U=§"(Q% (15)

where 17 =0.9697 mol.
The density of the isochore was fitted to the equation (the exact bomb
volume varies with temperature and pressure)

p=b,+b,T "+b.T * (16)

where p is in mol-dm * and the coeflicients are b,=1.30197341 x 10",
b, =8.23883179 x 10", and h,= —5.97789093 x 10°. The molecular weight
used for R134a is 102.03 ¢ - mol .

The internal energy and density of the saturated vapor were calculated
with the Tillner-Roth [11] equation of state for R134a. Any other gas-
phase equation of state which reproduces the correct behavior of the
second vinal coeflicients could have served the same purpose. A value of
(8U'2/31'*) - at the reference temperature (248 K) was calculated with the
vapor-pressure ancillary equation of Huber and McLinden [7]. To show
the contribution of each term in Eq. (10), intermediate values of the specific
volume, internal energy, and (3U'*'/@V'"'),. are presented in Table II. In
addition, we have shown that the internal energies of vaporization 4y, U
are only slightly higher ( <002 kJ-kg ') than the two-phase AU values
used to determine vapor pressures. Thus, most of the internal energy
change needed to span the two-phase region has been employed to evaluate
vapor pressures with this technique. The 4., U values were shown to be
within 0.09% of those given by Tillner-Roth and Bachr [11]. This result
implies that our vapor pressures will be thermodynamically consistent with
the Tillner-Roth and Baehr equation of state.
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For R125, we used the vapor pressure ancillary equation of Outcalt
and McLinden [13] as our model for p(T) in Eq.(8)

Po_Cit+ Gt 4 Gyt + Cyr®
Pe I_T

where t=1-T/T., T,=33933K, and p.=3.629 MPa. The fitting
parameters of Outcalt and McLinden [13] obtained from experimental
vapor-pressure data are shown in Table L.

An isochore with a total of 0.86966 mol was chosen from the
calorimetric data measured by Liddecke and Magee [ 14]. The change of
internal energy along the two-phase i1sochore was calculated with Egs. (14)
and (15). The fitting parameters for Eq.(14) are a,=1.99691908 x 107,
@, = —281467285 x 10", and «.=2.11451248 x 10°. The density of the
isochore was fitted to Eq.(16) within experimental uncertainty. The
fitting parameters for this equation are b,=1.16836327x 10",
b, =7.52740868 x 10", and  b,= —5.51047455x10". For  RI12S,
M =120.02 g-mol '. The internal energy and density of the saturated
vapor were calculated with the equation of state for R125 of Outcalt
and McLinden [13]). (QU/0V}, at the reference temperature {225.15 K}
was calculated with the vapor-pressure ancillary equation of Outcalt and
McLinden [13].

For R32, we used the vapor-pressure ancillary equation of Outcalt and
McLinden [13] as our model for p (T) in Eq. (&),

In (17)

lnpn_C,*{+C'zr""'-l-Cf‘*f:—{—Cn"‘-szr(“i
Pe [—<

(18)

where T =2351.35K and p=5.795 MPa. The fitting parameters of Out-
calt and McLinden [13] obtained from experimental vapor pressure data
are shown in Table L

An isochore with a total of 1.28723 mol was chosen from the
calorimetric data measured by Liiddecke and Magee [ 14]. The change in
internal energy along the two-phase isochore was calculated with Egs. (14)
and (15). The fitting parameters for Eq.(14) are a,= 148365613 x 10°,
a,= —1.51249056 x 10°, and «,=1.30273164 x 10°. The density of the
isochore was fitted to Eq. (16) within experimental uncertainty. The fitting
parameters for this equation are b, = 1.73805482 x 10", b, = 7.8201792 x 10°,
and b, = —4.86941367 x 10*. For R32, M =52.024 g-mol '. The internal
energy and density of the saturated vapor were calculated with the Outcalt
and McLinden [13] equation of state for R32. (QU/0V), at the reference
temperature (221.15 K) was calculated with the vapor pressure ancillary
equation of Outcalt and McLinden [13].
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3. RESULTS

3.1. Vapor Pressures for R134a, R125, and R32

We have devised a technique to evaluate accurate vapor pressures
from calorimetric data. We calculated vapor pressures from the triple-point
temperature to around the normal boiling-point temperature for the
following fluids: R134a, R125, and R32. Tables III, 1V, and V present
vapor pressures for R134a, R125, and R32, respectively. The bottom of
Table T presents the fitting parameters (obtained with the present techni-
que) for the vapor pressure equations. Deviations of these vapor pressures
from the respective vapor-pressure ancillary equations are shown in Figs. 2,
3, and 4. The figures also show how some accurate vapor pressure data
deviate from the vapor pressure equations.

Figure 2 (R134a) shows excellent agreement between the vapor
pressures determined by this technique and vapor pressures measured by
Magee and Howley [15]. It also shows agreement within experimental
uncertainty of 20-40 Pa (0.02-0.04%) for vapor pressures by Goodwin
etal [16].

For R125, Fig. 3 shows that the vapor pressures determined in this
work are systematically lower than the vapor pressure from the ancillary
equation. This is not necessarily a bad result, because they fall precisely
between two published data sets. The vapor pressures are just below
(—30 Pa, —0.03%) the vapor pressures by Magee [17] around the nor-
mal boiling point and are just above (+30Pa, +0.03%) the data of
Weber and Silva [ 18], also around the normal boiling-point temperature.
At the triple-point temperature there is good agreement ( +30 Pa, +1%)
with the values calculated from C, measurements reported by Liddecke
and Magee [14] and also the values Weber and Silva calculated using the
same C, data.

Figure 4 shows vapor-pressure deviations for R32. Our calculated
vapor pressures agree (within experimental uncertainty, +40 Pa, +£0.04%)
with the vapor pressures measured by Weber and Goodwin [19] around
the normal boiling-point temperature. At the triple-point temperature.
there is good agreement ( <5 Pa) between our values and values calculated
from C, measurements [ 14].

3.2. Estimation of Uncertainties

This section presents the sources of uncertainty for the calculated
vapor pressures. This includes the effect of the model used for p,(T), the
effect of the vapor-pressure data used to calculate (0U/0V), at the reference
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Table HL. Vapor Pressures Derived from U'*' and from Published Data for R134a

T Pa Pa.published Pa = Po published
(K) (Pa) (Pa)’ (Pa)
169.85 390.2 3934 31
170.00 396.8 400.0 -32
175.00 681.2 685.8 —4.6
180.00 1,1284 1,1348 —64
185.00 1,809.6 1.818.3 —8.6
190.00 28175 2,828.7 —11.2
195.00 4,269.6 4,283.6 —14.0
200.00 6,311.4 6,328.5 —17.1
205.00 9.119.6 9.139.7 —20.1
210.00 12,9039 129269 —230
215.00 17,909.7 17,9353 —2356
220.00 24.418.8 24 ,446.6 —-278
225.00 32.750.6 32,780.1 —294
230.00 43,262.6 43,293.2 —30.6
235.00 56.349.6 56,380.9 —31.2
240.00 72,4437 724754 =317
245.00 92.013.0 92.045.3 —323
250.00 115,560.3 115.593.7 —335

“From Rel. 7.

Table IV.  Vapor Pressures Derived from (' and from Published Data for R125

T Pa [, published P — Pa.published
{K) (Pa) (Pa)! (Pa)
172,52 29156 29531 —374
175.00 3.653.7 3.6958 —420
180.00 5.630.7 5.682.1 —-51.4
185.00 8.439.2 8.499.5 —60.4
190.00 12.331.8 12,399.9 —68.1
195.00 17.607.1 17.680.9 ~738
200.00 246114 24.688.3 -76.9
205.00 33,7394 33.816.5 ~77.1
210.00 454341 45.508.8 —74.7
215.00 60.,185.2 60,2559 ~70.7
220.00 78.528.0 78,5949 —67.0
225.00 101,040.6 101,106.8 —66.2

“From Rel. 13,
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Table V. Vapor Pressures Derived from ' and from Published Data for R32

T Ps P o pubhished Po = Do published
(K) (Pa) (Pa)” (Pa)
136.34 46.5 46.9 —{1.5
140.00 81.4 82.1 —0.7
145.00 166.1 167.4 —-1.3
130.00 3206 KR =21
155.00 389.1 5924 —34
160.00 1.035.3 1.040.4 — 3.1
165.00 1.748.5 1.755.8 -73
170.00 2.848.6 28587 —10.1
175.00 44920 45055 — 134
180.00 6877.6 6.894.9 —17.3
I185.00 10.251.1 10.272.6 =215
190.00 14.910.3 14.936.3 —26.0
195.00 212084 21.2389 —30.5
200.00 29.556.9 29.591.6 —348
205.00 40,4277 40.466.3 —38.0
210.00 543542 54.396.1 —419
20500 71.931.5 71.975.9 -4
220.00 938155 V38616 —46.1

“From Rell 13,
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temperature, the effect of an uncertainty in the saturated vapor specific
volume ( V"), the isochoric heat capacity of the ideal gas (C'), the specific
volume of the high-density isochore (¥'*'), and the change of internal
energy along the high-density isochore (4U'*'/AT). The uncertainties we
quote correspond to a coverage factor of 2 and were calculated using the
properties of R134a. Tables II and III and published tables in Refs. 7 and
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11 may serve as guides to the intermediate values used in the calculations.
We present comparisons of the vapor pressures at the triple-point tem-
perature, a middle temperature (210 K), and a temperature near the nor-
mal boiling-point temperature (245 K). The vapor pressures are 390,
12,904, and 92,013 Pa at these temperatures. An estimate of the overall
uncertainty in the evaluated vapor pressures is presented.

We evaluated the vapor pressure of R134a by fitting to two equations
representing p,(T) in Eq. (8). We used both Eq.(12) and Eq. (13) in this
technique. Practically the same values are obtained from both equations.
Differences between the vapor pressures are 4.2 Pa (0.004%) at 245K,
2.4 Pa at 210 K, and 2.5 Pa at the triple point. This implies that the results
of this technique are only weakly dependent on the model used to deter-
mine p,(T). as long as the model is capable of representing data over a
wide range of temperature.

In this technique, we need to evaluate (6U/0V), from vapor-pressure
data at a reference temperature. Two vapor-pressure equations from Huber
and McLinden [7] and Tillner-Roth and Baehr [11] were employed. The
difference between the calculated vapor pressures is 25.1 Pa (0.025%) at
245 K, 3.4 Pa at 210 K, and 0.1 Pa at the triple-point temperature. We get
close to the same results whether we choose one or the other ancillary
equation for the reference calculation. It is also apparent that the effect of
an error in the (QU/0V), value assigned to the reference temperature
diminishes as the temperature decreases.

We applied a systematic offset of +0.5% to the specific volumes of the
saturated vapor to test the sensitivity of this method to this quantity.
Uncertainty in the density translates directly into uncertainty in the
calculation of U”. This offset represents the largest estimated uncertainty
for these specific volumes. This offset causes a difference in the evaluated
vapor pressures of +30.0 Pa (0.03%) at 2450 K. +8.5 Pa at the middle
temperature, and +0.2 Pa at the triple-point temperature. These differences
will be incorporated into the propagation of uncertainties.

For this fluid, the uncertainty in the isochoric heat capacity of the
ideal gas (C'P) is estimated to be +0.5%. This amounts to an uncertainty
in U” of about 0.3 J-mol ~'. Since the ideal-gas contribution is the prin-
cipal part of U"(T) at low pressures, this is the principal source of uncer-
tainty for the evaluation of the internal energy of the saturated vapor. This
offset causes a difference in the evaluated vapor pressures of +27.0 Pa
(0.03%) at 245 K, +£7.0 Pa at 210 K, and +0.2 Pa at the triple-point tem-
perature.

Because the specific volume of the high-density isochore is negligible
compared to the specific volume of the saturated vapor even large uncer-
tainties in this quantity do not significantly affect the evaluated vapor
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pressures. The specific volumes of the high-density isochore are estimated
to have uncertainties less than 40.2%. This quantity does not have a
significant effect in the evaluation of vapor pressures.

For this fluid, the uncertainty of (4U'®/4T) is estimated to be
0.1J-mol " K '(0.1%). An uncertainty of +0.1% in (4U"*"/AT) causes
a difference in the evaluated vapor pressures of +9.0 Pa (0.009%) at
245K, £3.0 Pa at 210K, and +0.1 Pa at the triple-point temperature.

Using the square root of the sum of squares method, we estimated the
combined uncertainty of our vapor pressure values as +48.0 Pa (+0.05%)
at 245 K, +12.0 Pa (+0.09%) at 210 K, and +2.5 Pa ( £0.6%) at the tri-
ple-point temperature.

3.3. Vapor-Pressure Extrapolation or Evaluation

In addition to fitting (9U/0V) vs T for R134a, we added experimental
vapor pressures at temperatures close to the reference temperature (248 K)
and fitted them simultaneously to the same p.(T) equation. We had 39
(AU/3V), points and 31 vapor-pressure points. The (3U/0V), data range
from the reference temperature to the triple-point temperature, while the
vapor-pressure data range from 245 to 260 K. The effect of including the
experimental vapor pressure data is negligible. The evaluated vapor
pressure was only 4 Pa (0.004% ) higher at 245 K, was only 2 Pa higher at
210K, and remained the same at the triple-point temperature. This
emphasizes the fact that this technique is not an extrapolation of existing
vapor pressures but it is an evaluation of the vapor pressure from calorimetric
data.

4. CONCLUSIONS

A novel method was presented for evaluation of vapor pressures from
measured internal-energy changes and reference values of the vapor
pressure and its derivative with temperature evaluated near the normal
boiling-point temperature. In this application, internal-energy changes of
the saturated vapor calculated from an equation of state or from the ideal-
gas heat capacity were substituted for experimental measurements of AU at
low densities without incurring higher uncertainties. Alternatively, this
technique can employ calorimetric data to verify the thermodynamic con-
sistency of vapor-pressure data and correlations of such data. Agreement of
our calculated vapor pressures for Rl134a with accurate (+0.02-kPa)
measurements by Goodwin et al. [16] was within +0.04 kPa (+0.04%),
near the normal boiling point) at temperatures between 214 and 248 K.
Consistency with the equation of state of Tillner-Roth and Baehr was

84018 1-13
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demonstrated by the agreement ol internal energies ol vaporization with
the calculated values within 0.2 kJ - kg ' (0.09%). A propagation-of-uncer-
tainties analysis was used to estimate the uncertainty of the vapor pressures
determined with this method. When applied to R134a, we estimated the
uncertainty (coverage factor of 2) of the vapor pressure to be 0.05% at
245 K, 0.09% at 210 K, and 0.6% at 169.85 K. These uncertainties are of
the same order of magnitude as those from carefully designed experiments
for direct measurements of vapor pressures.
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NOMENCLATURE

C, Saturated liquid heat capacity

Cc' Isochoric heat capacity of the ideal gas
M Molecular weight

Do Vapor pressure
Q/aT Amount of energy needed to change the temperature of the sam-

ple by 1K
p Density
T Temperature
T | -T/T

Superscript Notation

'

Saturated liquid

Saturated vapor

(2) ={mX +m,X"}/{m +m,}. bulk property X'* in the two-
phase region for a specific property X, where m; and m, are,
respectively, the masses of the liquid and gas

”
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Subscript Notation

Ayap Change due to vaporization

v Constant volume (isochoric)

T Constant temperature (isothermal)

C Critical property

o Saturation property
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